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Preface

This research develops a proof~of-concept design of a linear quadratic Gaussian con-
troller for a phase-correcting, adaptive optics telescope. The dynamics and measurcment
models embedded in the contzoller are based for the most part on theoretical results from
the literature. The correlation between tlese relationships and reality would of course

directly affect performance of a fielded system. As Keats wrote, “truth is beauty.”
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Welsh (optics) and Dr Peter Maybeck (stochastic control). Capts Mik» Roggemann and
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Albstract

This thesis cousiders the design of a liuear quadratic Gaussian (LQG) contruiler
for a ground-based adaptive-optics telescope. The incoming aberrated image is reflected
from a 97-actuator ¢eformable piezoelectric mirror, then casured with a Hartmann-
type wavefront sensor. A Ivalman filter processes the outputs of the wavefront sensor and
obtains estimates of system states. A linear-quadratic (1.Q) regulator processes these state

estimates and determines an appropriate set of commands for the deforr.able mirror.

Atmospheric distortion is modeled as a set of fourteen Zernike cocicients whose dy-
namic behavior is produced by excitation of a set of shaping filters by zero-mean Gaussian
white noise. The response of the mirror to control voltages is modcled as a set of Zernike

coeflicients whose dynamics are modeled as deterministic first—order systems. The entire

conirol system is simulated using the Multimode Stmulation for Optimat Filter Lvaluation

(MSOFE]) software.




DESIGN OF A LINEAR QUADRATIC GAUSSIAN CONTROL LAW FOR AN
ADAPTIVE OPTICS SYSTEM

1. Introduction

1.1 Motivation

Certain aspects of the Air Force mission require high-resolution imaging of distant
objects, The resolution attainableis theoreticully diffraction limited by the recciving aper-
ture. From physics, this diffraction limited resolution is a function of both the diameter
of the aperture and the wavelength of light. The larger th. ratio of aperture diamecter to
wavelength, the better the resolution. When some or all of the space between the object
and aperture contains turbulent atmosphere, as with ground-based imaging of celestial
bodies, the resolution is degraded considerably-—the image wanders, becomes fuzzy and
distorted, and undergoes intensity fluctuations [2]. It has been reported [13:360] that, on
the average, these effects may degrade resolution of larger telescopes to two arc seconds
or more, corresponding to diffraction-limited viewing through only a 6-cm aperture. One
obvious approach to overcoming atmospheric distortion is to place the telescope above the

atmosphere. An example of this approach is the Hubble space telescope.

The Air Force Weapons Laboratory (AFWL) at Kirtland AFB, NM, the Rome Air
Development Center (RADC) at Griffis AFB, NY, ard a number of other Government
and private institutions are interested in compensating for these deleterious effects by
using adaptive optics in the receiving optical system. Adaptive optics is the use of active
optical components for compensation of unwanted time-varying optical characteristics.
For example, an aulomatic focus mechanism in a 35-mm camera is an adaptive optics

system. In particular, the AFWI is actively pursuing the use of adaptive optics using

deformable mirrors for ground-based observation of orbiting satellites, and is the sponsor

of this research.




1.2  Rescarch Objective

Thie overall objective of this research is to develop a Linecar Quadratic Gaussian
(LQG) control law for an adaptive optics system. Such a control law provides optimal
conirol in the sense of minimizing a defined cost function associated with deviation from
desired behavior. LQG also accounts for uncertainty in measurements and the stochastic
nature of the state dynamics. A detailed discussion of LQG control is available in the

literature [25). To achieve the LQG design, several tasks are required:

1. Define a state space ou which to base design and analysis.

N

. Develop the stochastic equations which model the open-loop system.
3. Develop the LQG control law.

4. Simulate and evaluate the controlled, closed-loop system.

The first task involves determining a method of quantifying distortion of a time-varying im-
age. The method should account for most of the distortion using as few states as possitle.
The states should also be condurive to measurement. Once the states are identified, the
second task is to represent the stochastic rature of their dynamics and measurements in a
sel of equations (models) which describe the random nature of the processes. Key compo-
nents of such a model are atmospheric distortion, mirror respense, and wavefront sensing.
Wherever practical, the rescarch uses actual data from the deformable mirror apparatus
currently in the optics development laboratory at the ATWL. Once these open-loop “truth”
models are developed, the actual controller can be designed. This task includes definition
of an appropriate cost function, design of a Kalman filter—possibly of reduced order—to
estimate system states and covariances, and design of a linear~quadratic {LQ) regulator.
The final task includes simulation of the ~omplete system. This will involve implementing
the truth models, Kalman filter, and controller in sofware capable of simulating random
processes. Multimode Simulation for Optimal Filter Evaluation (MSOFE) [28] is such a

package.
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1.3 Assumptions

This rescarch is a proof-of-concept. Several assumptions are necessary in order to
carry it out in the wlotted time. Some of the assumptions are mide based on literature
precedent. Many of the assumptions are made to account for lack of data. Other assump-

tions are engineering judgement.

The first assumption is that the telescope is ground based, and that the application
is satellite-viewing. A second assumption is that a separate control system is responsible
for keeping the telescopi pointed at the satellite. It is assumed the telescope is using a
visible point source of light at or near the satellite as a reference, and that anisoplanatism
is negligible, i.c., the light from the reference traverses the same atmosplere as the light
from the satellite. This implies that deforming the mirror to improve the reference image
will also sharpen the satellite image. The wavelength A of the reference image light is
assumed to be 514 nanometers (nm), the value used during laboratory evaluation of the

hardware [22].

The deformable mirror is a 97-clement piezoelectric mirror whose actuators are ar-
ranged in evenly-spaced rows and columns. Furthermore, based on limited data, it is
assumed the actuators are linear, and that all actuator influence functions are identical
and symmetric. The effects of additional factors (lenses, vibrations, etc.) are not modeled.
In an actual telescope, scparate active tilt mirrors may precede the deformable mirror.
These non-deformable tilt mirrors remove the gross tilts of the overall image. This re-
search does not explicitly mnodel these mirrors, but assumes they remove 95 % of the gross

tilts.

Although the statistics of atmospheric distortion of images are time varying—for
example, there is generally less distortion at night than day—the stochastic model for the
atmosphere is assumed time-invariant. This assumption is valid if the duration of the

observation is short relative to the time-varying nature of the atmospheric statistics.

Finally, the very nonrestrictive assumption is made that the time delay due to light

propagation through the optical components is negligible. The time delay due to finite
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sampling timne, however, is not negligible. The effcct of time delay in the sampling process

will not be specifically modeled, but will be used as an upper limit on the sampiing rate.

1.4 Trcatment

This thesis presents material in a topical fashion. First, Chapter 2 begins by laying
the groundwork fundamental to the understanding of atmospheric turbulence and its effect
on optical viewing. A qualitative discussion of an adaptive optics system is presented. The
remaining portion of Chapter 2 dcfines the state space used for design and analysis of
the control system. Chapter 3 develops stochastic models of the atmospheric distortion,
deformable mirror, and wavefront sensor. Chapter 4 presents the design of the LQG control

law, and Chapter 5 discusses the closed-loop simulation and evaluation thercof. Chapter

6 presents conclusions of this research and recominendations for futurc efforts.




11, Background

21 Atmosphe e Opties

(0.1 Introduction The atmosphere can have several effects on light traversing it.
Certinu chemical constitaents of the atmospliere may selectively absorh certain frequencies
of light and retransmit the cneryy at differert frequencies. If the light is a high-energy bear
such as a high-energy las or, 3t is possible for the light energy absorlied by the Limosphere
to affect the index of refraction in the immediate vicinity of the beam, which in turn
affects the shape of the beam profile. This phenomenon is known as blooming [41:223].
In the presence of aeraso.s, light may experience spatial discontinuiiies in the direction
of propagation, a phenomenon known as scattering. I'inally, in imagirg applications, the
turbulence of the atmosplere can chuse continuous spatial and temporal variations in the
index of refricction along the rayv path, resulting in temporal and spatial modulation of
the received intensity and phase. The modulation of intensity is known as scintillation
[5:37], au example of which is the twinkling of stars [37:224] [36:3]. As a rule of thumb,
scintillation effects can be considered insignificant when the wavelength A, propagation
distance through turbulence 7, and telescop? entranc: aperture diameter D. are related
by [44:2580] {45:819) :

VAL < D (2.1)

For example, for an atmospheric propagation distance of 20,500 meters {38:A4], wavelength

of 514 nanometers and a telescope diameter of 1 mieter, the result is a less severe inequality
0.102 < 1.0. Nevercheless, much of the literature [9:14335) [29] [47:3) [16) suggests the
intensity modulation is negligible. The modulation of phase is the leading contributor to
image wandering, fuzziness, and distortion. This research is therefore limited to correction

of phasc.

2.1.2 TJurbulence The physical property of an air pi.cel which most influences
phase of propagating light is its index of refraction. Tlus, in turn. is a function of various
plivsical paraineters such as temperature. pressure, humidity, and wavelength, to name a

few, Empirical equations describing the dependence of the index of refraction on these




parameters are generally available [5:10] [18:531] (31:101}. In the turbulent atmosphere
these physical parameters are generally functions of time and spacc. and hence index of
refraction is also a function of time and space. Because of the random nature of turbulence,

there is no deterministic expression of this relationship.

A popular representation [5:12] [18:336] of atmospheric turbulence considers the at-
mosphere to consist of many parcels or “eddics” of air moving with respect to each other.
The sizes of these eddies change with time; the larger ones generally dissipate into smaller
ones. Eventually, the eddies become small enough such that their kinetic energy dissipates
into heat. The sizes of the eddies are characterized relative to Lg and I, quantities having
units of length and known as the “outer scale” and “inner scale” of turbulence, respec-
tively. Eddies larger than the outer scale are anisotropic and are formed by wind shear
and temperature gradierts. An anisotropic eddy has spatial siatistics which depend on
direction [18:338]. These eddies are said to lie in the “input ran:e” since they represent
rnewly-formed eddies, inputs to atmospheric turbulence. For eddies smaller than Lg but
larger than lg, kinetic energy effects are more significant than viscosity effects, and the
turbulence is essentially isotropic. An isotropic eddy has spatial statistics which do not
depend on direction. Eddies of this size are said to be in the “inertial subrange” since
s.eitia is significant relative to friction. When the size of the eddy is less than Iy, viscosity
effects dominate over kinetic eflects, and the eddy is said to be in the “dissipation range”
[18:336]. At low altitude Ly is on the order of meters, whereas lg is on the order of millime-
ters. Both the local inner and outer scales of turbulence generally increase with altitude
(5:12). Light propagating vertically through the atmosphere, therefore, encounters eddies
of various sizes and of various subranges. The end result is a randomly-distorted image

whose degree of distortion is not known without measurement.

2.1.3 Structure Functions The statistics of atmospheric turbulence are often rep-

reserited as “structure functions” [37). The presentation of the structure function here
closely follows that of Tatarski |37] and Ishimaru [18]. Any direct quotes are from the

latter sourcc.

2.0




Some physical cliaracteristics associated with a given location in the turbulent atmo-
sphere can be described as raudom processes. For example, let h(2) be a random process
describing the absoluie humidity at a specified location. This random function ... is not
strictly stationary.” The statistics of h(t) can and generally do change with time. The
difference A(t + 7) — h(t), however, is considered stationary. This property is accurate
for many atmo: pheric variables. Thus it can be said the function A(t) has stationary

mcrements:

Eh(t+7) - k(1)) = F(1) (2.2)

where £ [-] represents the expectation operator and f(7) is a function of the time difference,

7 . The temporal structure function for this example, D(7) , is defined as:
Du(r) = £ [IR(t + ) - A(t)?] (2.3)
The correlation function is 2 more familiar statistical relation:
Bu(tr,12) = £ [h(t1)A(12)]
arnd is related to the structure function by:

Dp(7) = Ba(t + 1,0+ 7) + Br(t,t) = Bp(t 4+ 7,t) = Bp(t,t + 1) (2.5)

The spatial analog to the random process with stationary increments is the “locally
homogeneous” random function. For example, let A(r) be a random “process” describing
the absolute humidity at a specified time at location r . For convenience the A(-) function

symbology is reused here. This random functicn “...is not strictly homogeneovs.” The

statistics of h(r) can and generally do change with location. The difference A(r+p ) — A(r},

however, is homogeneous. Thus the function hA(r) is said to be locally homogeneous. The

spatial structure functien for this example, D(p) , is:




where the Dy (-) svmbology is reused for convenience. If the process is isotropic as well as
locally homogeneous, the spatial structure function depends oaly on the magnitude of i«
spatial separation:
Dalo) = € [z ) - 0[] 4 = Nt (2.7)
A key assumption in applying the temporal and spatial structure functions to atnio-
spheric turbulence is the concept of “frozen turbulence™ [5:17], also known as “Taylor’s
hypothesis™ [19:133). This assumiption implies the temporal fluctuations in various mete-
orological variables at a given location are caused by a “snapshot” realization of spatial
fluctuations flowing by. Taylor’s hypothesis is “usually a good approximation for optical

propagation through the atmosphere.” [19:133]

2.1.4 Kolmogorov Stutistics The index of refraction n at a location r can be ex-

pressed as the sum of the mean and a fluctuation about the mean [5:17):
n(r) = € [n(x)] + na(r) (2.8)

where ny(r) is a zero-mean Gaussian random variable. The spatial structure function for

‘1 isotropic random variable describing the index of refraction fluctuation is:

Day(p) = € Jrsle+ ) = a0 (29)

The unity subscript in Equation {2.9) is often omitted, with the fluction definition implied.

Kolmogorov’s famous result, as described by several references [6:155] [2:11] [17:22]
[31:101] [34:288] [5:19] [19:526] [9:1430}, is that, for spatial separation within th: inertial
subrange lp € p € Lo, Equation (2.9) is closely approximated by:

Do(p) = Cip** (2.10)

where (2 is the refractive index structure constant, a parameter which indicates the degree
to which atmospheric turbulence affects optical propagation [34:288]. C2 is gererally mod-

eled as a function of altitude and time of day [5:20}); several models describe it as functions
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Figure 2.1. Refractive Index Structure Constant

thereof [33:290} [5:20] [6] [3T:A4] [30:192]. Two such models are the SLC-Day model and

the Hufnagel-Stanley model [30:102]. Figure 2.1 shows that these widely-accepted models

are in less than perfect agreement, and that the altitude dependency of C2 varies over three
orders of magnitude {30;].

funciion:

Since the phase of a wavefront is of interest for many adaptive optics applications,
one may wonder if it has a structure function. Fried [9:1430] discusses the phase structure

r ) 2
Do(p) = |folz+ ) - ()] (2.11)
which is actually defned as a phase fluctuation structure function, since | is the deviation
of phase about the apeiture-averaged phase. Based on the Kolmogorov turbulence model
and neglecting intensity fluctuations, Fried writes:

Dy(p) = Ap*/®

(2.12)
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where the parameter A depends on propagation path, wavelength, and environmental

conditions. He then defines the coherence length parameter ro in terms of A:
ro = (6.88/.A)/° (2.13)

and thus:

Dy(p) = 6.88(p/1)°/° (2.14)

This 7o parameter is generally known as Fried’s coherence length in the later literature
[29:209] [11:550] [40:1774] [17:1596]) [31:102]. lie describes it as the “diameter of a hetero-
dyne collector for which distortion effects begin to seriously limit perfermance”. Another
interpretation is that it is the diameter of an aperture such that the rms phase distortion
is 1 radian [23]. He finishes his introduction by stating that, for visible and near-IR prop-
agation frora an approximately zenith source, typical values of rg are on the order of a few

centimeters.
An equation for the coherence length in terms of other parameters is given by Parenti

[31:102]:
32 3/s
7o = 0.185 (;m) (2.13)

where

To = Fried’s cokerence length ()

A = wavelength (m)

¢ = zenith angic of source (rad)

Cih) = refractive index structure constant (m~2/3)
h altitude (m)

Wang and Markey [46:78] give a simplified equation for rg where propagation is from
the zenith and the refractive index structure constant is assumed to be ccnstant along the

path:

7o = 1.68(C2 z k?)73/3 (2.16)




2 = path length through turbulence (m)
wavenumber = 27/ (m™')
zenith angle of source (rad)

~
o

Walters and others [42:828] present some measured values of 7 for vertical paths at
mountaintop sites in the White Sands, New Mexico region. The nighttime average (over a
seven-month period) was found to be 9.0 cm % 4.0 ¢cm (1-0); the daytime average was 4.5

cm X 1.8 cm (1-0). Starlight was used as the light source.

Parenti [31:104; gives some estimates of ro derived from the lufnagel-Valley and
SLC-Day models of C?(h) at 500-nm wavelength and two zenith angles. These are shown

in Table 2.1.

Table 2.1. Calculated Coherence Length

Medel Zenith Angle 70

Hv-21 0° 5.0 cm

HV-21 45° 4.0 ¢
SLC-Day 00 5.1 cm
SLC-Day 45° 4.1 cm

The significance of the development presented thus far is that the effect of atmo-
spheric turbulence on optical viewing is complex. The time behavior of the quality of
the received image depends on many factors such as the wavelength, altitude-dependent
structure function constant, zenith angle, and altitude of the telescope. The wind velocity
and its altitude distribution also affect image quality. In addition, satellite motion with

respect to the observer is a factor. The introductory discussion presented thus far ceuld

continue to the point of having an analvtically-derived statistical model of the effect of
atmospheric turbulence on image quality, but the mathematical rigor is beyond the scope
of this research. The reader is referred to the literature for an appreciation of the rigor
involved [16]. The significant result is that no single model will be accurate for all possible
atmospheric conditions. The use of multiple models will be briefly discussed in Chapter

VI

‘)>7

—




2.2 Zernike Functions

2.2.1 Introduction It is obviously necessary to have some means of expressing the
phase distortion present in an i.nage. This section develops the use of the Zernike basis

functions as such a means.

Assume 2 circular aperture of diameter D is pointed at a coherent, monochromatic
point source of light located a distance L away. Further assume that L is much greater
than D. If there are no distortive elements along the propagation path, the phase of the
incident wave within the aperture would be spatially constant, i.e., the phase of any two
points within the aperture would b¢ the same. It could also be said for such a case, that
the phase at any point within the aperture is equal to the spatially averaged phase. Figure

2.2 shows a two-dimensional representation of this situation.

/\

=

Figure 2.2. Planar Wavefronts at an Aperiure

If a turbulent atmosphere is now introduced into some or all of the space between
source and observer, the wavelionts at the aperture will be distorted, i.e., two points within
the aperture will not necessarily have the same phase. Furthermore the phase at any point
within the aperture will not necessarily equal the spatially averaged phase. Figure 2.3

shows & two-dimensionai 1epresentation of this situation.
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Figure 2.3. Distorted Wavefronts at an Aperture

The absolute phase of the electromagnetic wave in the aperiuse is a function of time

and of the spatial (polar or rectangular) coordinates within the aperture:

¢ = ¢(r,0,1) (217)

¢ = ¢(z,y,1) (2.12)

where

¢ absolute phase

T = radial distance = i+l
0 = angular coordinate =  tan~{y/z)
T = X-coordinate = 1 cos(0)

Y = y-coordinate = rsin(@)

The functions represented by Equations (2.17) and (2.18) do not have identical functional
forms; both functions are given the same name ¢ for convenience. Phase can be expressed
in units of degrees, radians. or wavelengths. Likewise, z, y, and 7 can be expressed in units

of wavelengths or the length normalized by the rac us of the aperture.




The right-hand sides of Equations (2.17) and (2.18) are expressible in several ways.
One option might be to sample the phase at numerous locations in the plane and let the
vector of samples define the shape of the phase function. This “vector space™ approach
has been used by AFIT rescarchers [3) [12] [27] [33]. Another approach, the one taken in

this research, is to express the phase as a sum of functions:

N
(f)(T,O,t): Z F,‘(T,(‘),f) (219)
1=0
More conveniently, the phase can be expressed as a lincar combination of basis func-
tions:

N

¢(r,0,1) = ai(t) Zi(r, 0) (2.20)

=0
where the Z;(r,0) are basis functions which span the functional space containing é(r, ©),
and the a,{¢) arc the cocflicients. The choice of which set of basis functions to use is a
design decision. Some mentioned in the literature include Legendre (35), Karhunen-Loeve
(29] [43] [46], and Zernike [4] [9] [16] {46] (44] [7) [45] [15] {38] functions. In the case of
turbulence modeled with Kolmogorov statistics, the Karhunen-Loeve functions are not
analytic {29:210). The Zernike set of basis functions, analytic by definition, are used as

basis functions in this research.

2.2.2 Zernike Functions The Zernike functions are the z;{r, ©) of Equation (2.20).

Each Zernike function is a real-valued, dimensionless, deterministic function of position
within the aperture. The a;(t) are the Zernike coefficients. Each Zernike coeflicient is a
real-valued function of time, with units of wavelength for this research. The i-th Zernike
function can be expressed as the product of a radial function and an azimuthal function
[4]:

zi(r,0) = fi(r) gi(O©) (2.21)

Details of generating the radial and azimuthal functions of Equation (2.21) are available

in the literature {38:79)[4]. Table 2.2 presents the first fifteen Zernike functions (0—14)

along with their radial and azimuthal order, n and m, respectiveiy. The functions are elso

expressed in rectangular coordinates as well. Three-dimensional plots of the first fiftern
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Table 2.2. Zernike Functions

i no | om Z(r.0) Zia,y)
0 0 0 1 1
1 1 1 2(%) cos(@) $a
2 1 1 2(3;)sin(0) %y
2 y 0 V3201 = 1) V3(22 4 2yt — It?)
R 2 VE(5)¥ sin(20) 2 2y
B 2 2 V6(5)2 cos(20) Yo (22— y?)
6 3 1 VR(3(R)? - 2(5))sin(O) Y8(327 + 357 — 2Ry
i 7 3 1 VR(BI 5 = 2(F)) cos(0) 3@(3x?+3y?—21f1’)z
| s 3 3 VR(5)?sin(30) YB(322 — y?)y
9 3 3 VS(5)? cos(30) 5}?@(12 - 3y%)z .
0 ] a4 | o | VAe(E) -6(5)7F+1) YE(6(2 + 17)? — GR?(2? + y?) + RY) N
11 | 4 2 VIO(4(5) = 3(H)P) cos(20) | ¥I0(422 + ay? - 3R?)(2? - 4*)
12 |4 | 2 | VIOW(R) - a(3))sin20) | 0(z? 4 4yt - 3R%)ay
13 | 4 4 VI0(%)! cos(40) 92— 62292 + y)
14 4 4 VI0(%)*sin(40) A0(22 _ y )y

Zernike function are shown i Appendix A.

One advantage of using the Zernike functional space is that the functions correspond
to aberrations commonly studied in optics [20:196]. Table 2.3 shows the names of the more

common ones. By convention, x-tilt is defined in this research to be tilt about the x-axis.

The Zernike functions form an orthcgonal basis set which satisfies [38:79]:

1

2= R
Y /; de /0 drr Zi(r, (") Z,(r,0) = &, (2.22)
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Table 2.3. Zernike Function Names

i Aberration
0 piston
1 y-tilt
2 x-tilt
3 focus
4 astigmatism
5 astigmatism
6 coma
7 coma
where 6;; is the Kronecker delta:
I B (2.23)
0, i#j

As shown in Appendix C, a consequence of Equation (2.22) is that the root-mean-square
(rms) value of phase in an aperture is the square root of the sum of squares of the corre-

sponding Zernike coefficients:

Prms = ag+a¥+a%+ +aQN (2'24)

The expansion coeflicients for an arbitrary phase associated with Equation (2.20) can be

obtained by [38:79]:

J dO [ drr W(r,0)¢(r,0,1)Z(r,0)
[ 40 [ drr W(r,©)

a;(t) =

where W(r, ©) is the aperture weighting function defined by {38:79]:

1 r<R
W(r,0)=
0 r>nR




It should be noted that this definition of W(r,0) is selected to be consistent with the
scaling coeflicients in Z;(r, ©). Yor a circular aperture of known radius, the phase within
the aperture at a given time can also be expressed in shorthand notation as a vector a of

expansion coefficients:
$(r,0,0) => 21 (1) = aolt) «i () ax(t) - an(t) (2.27)

Post-multiplication of ;\_T(z‘) by a column vector of N +1 Zernike functions is implied in this
notation. In general, N = oo isrequired to obtain an exact description of an arbitrary phase
front in terms of basis functions. Based on spatial Nyquist consideration of the actuator
and wavefror.: sensor geometry for the optics system at the AFWL, and of relative mean
square phase error content of each Zernike mode in tlhe presence of Kolmogorov-modeled
turoulence (see Appendix B), the truth mode] in this research is selected to consist of the

first fifteen Zernike modes (N=14).

As an example of what an arbitrary sum of the first 15 Zernike functions would look

like, Figure 2.4 shows a plot of Equation (2.20) for a coefficient vector of:

. r
gr(t)=[20111111]1111111] (2.28)

The zeroth Zernike mode (i.e. piston) is not a distortive contributor. Also, it is not
measurable by the sensor used to measure wavefront distortion. Thus we can subtract the
piston contribution from the absolute phase and obtain a functional space which describes
the deviation in phase from the aperture-average phase. From this point forward, only
Zernike modes 1-14 are considered, and ¢(r,©,1) is redefined to be the deviation from
aperture-averaged phase, also termed phase distortion. Thus, using the shorthand notation

introduced earlier:
$(0,0) = al(t)=| ai(t) as(t) - aa(t) (2.29)

Figure 2.5 shows the same plot as Figure 2.4, but with the piston (i.e. average phiuse) not

included.




Figure 2.4. Weighted Sum of Zernike Functions 0-14

One final topic is required to be discussed regarding Zernike-function description of
optical phase deviation—scaling. The question is, if a large aperiure sample of an incoming
wavefront is focused into a smaller aperture. what is the effect on the expansion coeflicients?
The answer is: nothing. For example, consider the geometry of Figure 2.6. Aberrated light
from a distant source enters a one-meter radius circular aperture. Assume the aberration

consists of ten wavelengths of x-tilt across the aperture. At this large aperture:

2
o(z,y) = a2 Za(z,y) = ap RU=2ay (2.30)

At y = 1 the phase deviation is five wavelengths; therefore a; = 5/2 for the large

aperture.

By passing through a set of perfect lenses, the size of the image is reduced to a circle

of 0.1-meter radius. At this small aperture:

. 2
O'(2.y) = ap Za(z,y) = a; Y =20 asy




Figure 2.5. Weighied Summ of Zernike Tunction

At y=0.1, the phase deviation is still five wavelengths; therefore a} = 5/2 {or the small
aperture as well. This same reasoning can be extended to all the Zernike modes. This
aperture invariance is convenient for imaging applications, since generally a large-aperture
telescope gathers light, a medium-aperture deformable mirror processes it, and a small-

aperiure wavefront sensor measures its distortion.

2.3 Stochastic State-Space Modeling

The development of a Linear Quadratic Gaussian (LQG) contiol law requires a linear
stochastic state-space model of the systein of interest. The required forms for continuous

dynamics and discrete measurements are {24:169):

(1) = F(x(1) + Bit)u(t) + G(1)w(t) (2.32)

H(tt)ﬁ(tl) + X(ti)
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the zero-mean white Gaussian driving noise w(t) is defined by

E{w(tywT (1)} = Q()S(t - t') (2.34)

where Q(t) is the noise strength matrix and 6( ) is the dirac delta.

The covariance of the zero-mean measurement noise v(t;) is defined by [24:174):

5{z(t,)zT(t,)} = R(4)é;; (2.35)

where R(¢;) is the noise covariance matrix.




The dimensionalities of the vectors and matrices associated with continuous dynamics

and discrete me:surements are given in Table 2.4 [25:9].

Table 2.4. Dimensionalities of State-Space Matrices and Vectors

Matrix/Vector Dimension
F(t) nxXn
x(1) nx1
B(t) nKT
u(t) rX1
G{t) nXxs
w(t) s¥l
Q1) $X S
z(1;) mx 1
H(t;) mxn
v(t) mx1
R(t;) m X m

If the dynamic system and measurement device are time-invariant, which was as-
sumed for the nominal models of this research, the time-dependence can be dropped from

the notation associated with the defining matrices:

1

=
[

A
1

Fx(1) + Bu(t) + Gw(1) (2.36)

N

PAS
oy
=

N
]

Hx(t:) + v(t,) {2.37)

The dynamic driving noise strength and measurement noise variance lose their time-
dependency and become Qand R, respectively. Such time invariance implies that the

statistical behavior of the system does not change with time.

Kaiman filters, which will be discussed shortly, often model the continuous-time

system dynamics of Equation (2.36) in the discrete-time domain. An “equivalent” discrete-




time model of the linear system dynamics can be written as [24:171):
x(tiy1) = P (g1 - L)x(4G) + Bau(s) + wy(t) (2.38)

where ®(t;+; — t;) is the n x n, time-invariani state transition matrix associated with
F [24:41) and the zero-mean discretized driving noise wy(#,) has strength Qg defined by

[24:171]:
g{ﬁd(ti)ﬂd’r(t,j)} = Québ;; = [/:'“ &(tiy1 - 1)GQG T T (14, — 1) dr] ¢y (2.39)

The discrete-time input distribution matrix By is defined by {24:171]:

t,
By :/ " &(tiy) - T)B dr (2.40)
i

Chapter III presents the definitions of these vectors and matrices in terms of the

adaptive optics system of this research.

2./ Linear Quadratic Regulator

The simple LQG regulator concept is based on the assumption that there are costs
associated with nonzero states (x) and nonzero control inputs (u). Furthermore, the costs
are assumed to be quadratic in nature, that is, the cost is proportional to the weighted
squares of the states and/or control inputs. Maybeck [25:10j defines a simple form of

quadratic cost function as:

I\' A
J=¢ [zi [T X)) + 2Ty uw) + §>_<T(m+1)xfa(t~+l) (2.41)
1=0

where tg and ty 41 are the start and final times, respectively. The : and N are time indices
here and should not be confused with their use as mode indices in Zernike functions. A
more general cost function includes cross terms between states and control inputs [25:73],

but this extension is not used here.

The design of the LQG regulator involves determining the optimal input voltages to




the mirror, u*(¢;), which minimizes the right-hand side ofEquation (2.41). Minimization
of this cost must be related to minimization of the phase distortion in the image reflected
from the deformable mirror {maximizing performance). This relationship is implemented

via the weighting matrices X(¢;) , U(t;) , and X .

Since only noise-corrupted measurements are available, a Kalman {'ter is used to
estimate the states (x,) given the measurements. Figure 2.7 shows a block diagram of a
generic LQG controller. In the context of the adaptive optics control of this research, the
z(t;) are the discrete-time measurements from a Hartmann slope sensor, and the u(1;) are

the mirror control voltages.

KALMAN FILTER

L wewnm
x(t] utr)
= e
£42,) ,

. One-sasple |
BeEOry nl

u'(t)

Onea-caapls
senory

N

Figure 2.7. Block Diagram of LQG Controller

2.4.1 Kalman Filter The Kalman filter for the simple LQG controller can be de-
signed separately from the regulator due to the certainty equivaience principle (25:17].
The Kalman filter accepts as inputs the measurements z(¢;) and generates an estimate of

the system state, x(t;). It accomplishes this by using an internal model of the system to




propagate this state estimate and its covariance, P ;| and then updating its estimate by

appropriate processing of measurements. The filter covariance is:
P=c{x-%x-%") (2.42)

As will be seen shortly, in 2 Kalman filte: this covariance is not dependent on the actual

values of the measurements.

Kalman fiiter operation can be divided into two sequential processes involviug the
filter state estimate and covariance: propagation and measurement update. Propagation
is the change in the state estimate and filter covariance as measurement-free time elapses.
The measurement update process is the cliange in the state estimate and filter covariance

as a set of measurements is processcd. The governing equations are [25:18-19]:

x(57) = @(4 - t-)&({H) + Bau{tia) (2.43)
P(t7) = ®(ti—-tia)P(E)87 (4 - tia) + GaQuG] (2.44)
vy T R . .
K(t) = P@)HT [HPE)HT + R (2.45)
(7)) = &(7)+ K@) [z - H()) (2.46)
P(tf) = P(7)-K@HP®)) (2.47)

where

5_<(tf_]) = estimate of x at start of t,_; — ¢; propagation cycle
P(tf_1 filter covariance at start of ¢,_; — t; propagation cycle
x(t7) estimate of x at end of propagation cyvcie at time ¢;
P(t7) filter covariance at end of propagation cycle at time t;
K(t) Kalman filter gain at update time

Z; measurement realization at update time

%(tH) estimate of x just after update

P(t}) = filter covariance just after update

The Kalman filter gain equation implies an on-line inversion of an m X m matrix.

If the number of measurements is greater than the number of states (m > =) then an




alternative measurcment update may be preferred [26:54]:

P(1)

S PR To-1741"" a
P ¢t7)+H ' RT'H (2.48
1 J )

K(t) P )HT R (2.49)

This form implies on-line inversions of matrices having dimensions of n x 1.

2.4.2  Lincer Quadratic Regulaticn As derived by Maybeck [25] using a dynamic

programiming approach, the optimal control input can be written as:
u* (&(89), 1) = ~GL(1) 2(t7) (2.50)
Assuming time-invariant cost matrices, ihe optimal controller gain G} (t;) is:
GZ(t:) = [U+ BIK.(ti41)Bd]  BIKd{tir1)®(tia — 1) (251)

where the controller Riccati matrix K.(¢;) is propagated via the backward Riccati difference

equation [25:13):

K(i) = X+8T(tim — t)K(tig1)®(tig1 = ti)
. -1
~&7 (ti41 - t)Ke(ti41)Ba [U + B K(ti41)Ba

xBIK (2i41)®(tipr — ;) (2.52)

from the terminal condition:

Kc(tj\,..l,.l) = Xj (253)

This backward Riccati equation generally exhibits a terminal transient as ty4; is ap-
proached. 1f the system is never expected to reach the terminal condition, i.e.,if {y4; = oo,
then the steady-state solution to the backward Riccati equation can be used for K. for all
bounded time. Substituting this K. into Equation (2.51) yields the steady-siuic controller

M *
gain G.
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2.5 Summary

Light traveling througl atmospheric turbulence is subject to spatial and temporal
variations in index of refraction along the propagation path. These variations result in
phase distortions in formed images. The statistics of such distortions are dependent on
temporal and spatial characteristics of the atmosphere. The structure function expresses
the random nature of some of these statistics, and is the foundation upon which much of

the literature builds.

A quantitative description of the phase distortion in an image can be expressed as
an infinite sum of weighted Zernike basis functions. That the phase distortion is not

necessarily time invariant is expressed in the time-dependency of the Zernike coefficients.

Linear Quadratic Gaussian (LQG) control is one approach to controlling a dynamic
system. Such a system is expressed in state-space forin as « set of linear dynamics equations
and a set of linear measurement equations. LQG control utilizes cstimates of the system
state to derive a set of control inputs, the goal being minimization of a cost function. Yor
the adaptive optics system, the pi.ase distortion in an image reflected from a deformable

mirror is to be minimized.

. ’A
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III. Stochastic Models

3.1  Adaptive Oplics Sustem

The adaptive optics system of interest is a ground-based telescope which is used to
observe artificial earth satellites. It is assumed that! a monochromatic, coherent source of
514-nm light is within the same isoplanatic patch. It is also assumed that the light intensity
is of sufficient strength to be seen against background light. A simplified schematic of the
adaptive optics system is shown in Figure 3.1. The key components to be modeled and/or

designed arc:

1. Atmospheric distortion
2. Deformable mirror
3. Wavelront sensor

. Kalman filter

-8

5. Cuntroller

The development which follows treats these topics in the order indicated. The overall
system states will consist of the atmospheric distortion Zernike coeflicients augmented

with the Zernike coefficients corresponding to the mirror shape.

3.2 Atmospheric Effects

Based on Taylor’s frozen turbulence concept introduced in Section 2.1.3, the temporal
statistics of image distortion can be modeled as the spatial statistics “blowing by.” A
common analytical way of implementing these temporal statistics is to let the phase {ront
distortion in the receiving aperture be modeled using Zernike basis functions, and let the
Zernike coefficients (i.e. the elements of a,(t) where the subscript a denotes atmosphere)
be outputs of shaping filters. [16)]. According to Noll [29:210), these Zernike coefficients
are well-modeled as zero-mean Gaussian random processes. Gaussianuess results from

the suinmation of the distortions from each atmospheric layer of turbulence traversed.

The turbulence of each layer contributes 2 random increment to the final set ¢f Zeruike
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Figure 3.1. Simple Schematic of Adaptive Optics LQG Control
coefficients of phase distortion. The central limit theorem states that the sum of many
such independent random contributions is Gaussian.

The general equations describing the atmospheric distortion shaping filters are of the

form:

X5(t) = FaXa(t) + Gawrg(t) (3.1)

The F,, G,, and Q, are modeled in this rescarch as time invariant. Absence of a B,u(t)

term is due to the atmospheric distortion being uncontrollable. The dimension of x,(t)

will in general be greater than the number of Zernike modes modeled, since cach Zernike




coeflicient may require multiple shaping filter states.

Yor this research atmosplicric distortion is modeled as consisting of Zermi:e modes
1-14. The processes a,(1) corresponding to these 14 coefficients can be extracted from

the total distortion state vector x,(t) via multiplication by an extraction matrix A :

2,(1) = Ax,(1) (3.2)

The vector a, (t) denotes the Zernike coeflicients of the image phase distortion (excluding

piston) entering the adaptive optics system.

One means of designing atmospleric distortion shaping filters (i.e. Fg, G, and
Q.) would be to plot actual power spectral density (PSD) (ata for each Zernike coeffi-
cient, based on collected data. For added authenticity, the data could be collecied using
ground-based sensors at the actual telescope site. Having the FPSDs plotted, straight-line
approximations could be drawn to determine corner frequencies and strengths of shaping
filter driving noise. Actual PSD data is unavailable for this resecarch, but does exist [23].
Glasson and Guha [10:13] use this approach to model the phase distortion due to atmo-
spheric turbulence for the first five Zernike modes. They accomplish this modeling by

fitting a series of straight lines te simulated power spectral density data.

Another approach for designing the atmospheric distortion shaping filters is to sim-
ulate the Zernike coefficients’ autocorrelation kernels from analytically-derived equations,
followed by curve-fitting to standard shaping-filter equations. Derivation of the required
analytical relations is beyond the scope of this research, as Section 2.1.4 points out. Ap-

pendix D presents the details of generating the simulated autocorrelation kernel data and

the use of curve-fitting the data to shaping filter functions. Also presented in Appendix D

are the matrices Fy, and @, of Equation (3.1) as well as the extraction matrix A of Egua-
tion (3.2). The software developed to generate simulated autocorrelation data is archived

at AFIT [39].




8.8 Mirror

This research assumes the mirror is a monolithic deformable mirror with 129 (97
active) everly-spaced actuators, manufactured by Itek. A sample of this mirror is at the
optics laboratory at the AFWL. The mirror consists of four major components: faceslicet.
base, clectronic circuitry, and actuators. The faceshect is a monolithic piece of ultra-low
expansion glass (ULL). The 129 actuator pusher pads are precisely machined into the back
side of the faceshect, The base is made of similar ULE to minimize any relative thermal

expansion effects, i.e., latceral forces on the actuators {21:1].

Each of the 129 piezoelectric actuators is constructed from layers of lead magnesium
niobate (PMN). Each actuator is epoxied to both the facesheet and the base. The actuators
are electrorestrictive, meaning either a positive or negative voltage causes the actuator to

]

contract, i.e., the piczoeleciric stack to “shorten.” To make two-way excursions of the
aciuaior possible, the stack is hiased to -150 volts. Thus, application of a positive voltage
reduces the total voltage magnitude, causing the stack to expand. Application of a negative
voltage increases the total voltage magnitude, causing the stack to contract. The maximum

magnitude of applied voltage allowed is 300 volts [21:1].

Application of these large voltages to the actuators is controlled by a control voltage
whose range is 210 volts. A -10 volt control voltage corresponds to -150 volts applied;
making the total voltage magnitude 300 volts. A 410 volt control voltage corresponds to
+150 volts applied, making the toial voltage magnitude 0 volts. Thus, positive control

voltage causes the stack to expand; negative conirol voltage causes it to contract [21:1].

Of the 129 actuators on the mirror, only the central 97 are actively controllable.
The Itek Operation Manual [21:4] states the remaining 32 could be made independently
controllable by the addition of respective driver electronics. At present, these extras are
tled to a bias voltage to provide fixed boundary conditions. Figure 3.2 shows the location
and numbering scheme for the 97 active actuators, assuming the manufacturer-specified

0.85-cm spacing.

It should be noted that the configuration of this mirror at the AFWL optics develop-

ment laboratory has only the central 69 actuators independently controlled; the remaining
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Figure 3.2. Actuator Locations on Itek 97-Actuator Mirror

28 are slaved to the nearest neighbor within the central 69 (23]. This arrangement is used
to implement the so-called “zonal™ approach to mirror control in which each actuator cor-
responds to a spatial sample of the image in the ,neasurement device. In this case, the
Hartmann wavefront sensor (to be discussed in Section 3.5) has 69 subapertures. This
rescarch, however, uses the so-called “modal” approach, which implies control of (Zernike)
modes of the distortion. Greenwood [11:549] states, without justification, that the de-
grees of correction possible with either approach are similar. He further states the current
(1978) preference is the zonal approach. Southwell [35:1006), on the other hand, argues
that reconstruction of the phasefront from Hartmann-type sensor measurements appears
to be superior for the modal approach. This research will not compare one approach to

the other; the zonal approach is merely mentioned to explain the AFWL configuration.

This research assumes all 97 active actuators are driven.




The mirrored surface of the facesheet in front of the 97 actuators lies within a 4.25-
cm radius opening in a circular bezel. Thus the effective diameter of the mirror aperture
is 8.5 cm. Table 3.1, condensed from the Jtek Operation Manual {21:6], shows add**ional

mirror parameters.

Table 3.1. ATWL Deformable Mirror Characteristics

Facesheet material ULE '
Clear aperture 8.5 ¢m
Number of actuators 97 controlled + 32 biased
Actuator geometry Square array, 11 across diameter
Actuator spacing 0.85 cm
Hysteresis None obsecrved
Stroke 3.91 microns (mean)
Surface figure A/10 p-p @ 0.6328
Coating Protected aluminum
Reflectivity >84%
Actuator bandwidth 500 Kz
Operating temperature 20°C-30°C
Package size 12-inch cube

Lincarity of a single actuator implies that the graph of local mirror displacemnent
versus control voltage is a straight line. AFWL performed such measurements on a few
actuators; one of their plots is shown in Figure 3.3 [22]. Because of the flattening at the
ends of the control voltage range, the behavior is not strictly linear. However, over a
reasonable range of control voltage, the function is approximately linear. The design of
the controller assumes a linear model. It is expected that an appropriate weighting matrix

in the cost function will keep the control voltage within the linear range most of the time.

Lirearity of the coliection of actuators implies inter-actuator superposition holds. For
example, applying one control volt to actuator # 39, measuring the mirror response, then

applying one control volt to actuator # 59. and adding the respouses should yield the same

3-6
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Figure 3.3. Sketch of Actuator Displacement Linearity

total response as applying the voltages simultaneously. Such multi-actuator measurement
data are not available for this mirror, but this research will assume superposition holds.

The literature contains precedent for the vahdity of the superposition assumption [1:31].

8.8.1 Steady-State Mirror Behavior It is expected and desired that application of

a control voltage to an actuator will cause the mirror to deform. This deformation, how-
ever, does not occur instantaneously; a finite time is required for the mirror to attain
its “steady-state” position. This section of the report addresses the relationship between
applied control voltage and the steady-state mirror response. The eventual goal is to re-
late a vector of 97 control voltages to a vector of 14 resulting Zernike coefficients. These
“mirror” Zernike coefficients add to the 14 “atmospheric” Zernike coefficients of the in-
cident atmosphere-aberrated light, hopefully cancelling them. Thus, reflection from the

deformable mirror is modeled as the addition of atmospheric Zernike coefiicients to the

mirror Zernike coefficients.




The influence function is a mathematical representation of the effect of a single ac-
tuator voltage on the local mirror shape. Usually, the influence function is nonzero only
in the vicinity of the actuator: the influence function of an actuator has a limited spa-
tial domain. Several factors affect the influence function of an actuator. These factors
include piezoelectric type, facesheet material and thickness, proximity and geometry of
neighboring actuators, and actuator linearity. Based on the previous assumptions of actu-
ator linearity and evenly-spaced geometry, 1t 1s assumed that all actuators have ilie same
influence function. The fact that the word “mean” appears in Table 3.1 for the actuator
stroke parameter implies that each actuator does not have the same intluence function.

Nevertheless, this research assumes uniformity of the 97 influence funciions.

Limited influence data is available for the Itek mirror at the AFWL. Itek provided
data corresponding to a two-dimensional slice of the influence function for the central
actuator, #49. This slice was taken along the mirror X-axis, spanning actuators 71, 60,
49, 38, and 27. Itek’s plot of this datais shown in Figure 3.4. The magnitude of the voltage
applied to the actuator was 200 volts for this data. Influence data was also available along 2
45-degree slice through the central actuator. This data showed less of a negative excuzsion,
but was of the same general shape as the slice along the X-axis. Thus, it is assumed thai
the slice through the X-axic is approximately valid in any direction. The ordinate data
(X) used to plot Figure 3.4 were convertced into units of cm. The abscissa data were
converted into 2-way decrease in path leagth, measured in wavelengths of 514-nm light.
The abscissa data were then scaled to represent one volt of control voltage, invoking the
linearity assumption. The transformed data were curve-fit to a tenth-order polynomial in X
truacated at X=+41.6739 cm, the spatial domain of influence. The truncated function was
then rotated about the actuator axis (i.e., the “Z” axis) resulting in the three dimensional
influence function of the central actuator. This influence function, when expressed in

mirror coordinates, yields:

f(X,Y, XA, Y4) = {09673 (3.3)
~2.726 [(X = X4) + (Y = Ya)?]

2
+2.943 [(X - X ) + (¥ = Ya)?]
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Figure 3.5 shows the three-dimensional piot of the influence function for the central actu-
ator. Note the X,Y units are cmn, whereas the “Z” units are wavelengths. This accounts

for the extreme protruding appearance of the plot.

Figure 3.5. Approximate Influence Function for Actuator #49

At this point, a mental example is helpful. Suppose a perfectly planar wavefront is
incident on the mirror. Further, suppose that one volt of control voltage is applied to an
arbitrary actuator, all other control voltages being zero. Let the XY position of interest
be right at the actuator,i.e., A = X4 and Y = ¥,. Therefore, the value of f at that
actuator is 0.9673 wavelengths. Actually, the mirror only moves 0.4836 wavelengths at the
actuator, but this causes the path-length of the reflected light to be reduced by twice as
much and f is defined to be such reduction in path length. Suppose the light reflected
fiom the entire mirror then passes through an aperture of the same “ameter. The light
in this aperture corresponding 1o that reflected from the extended actuator reaches the
aperture first since its path length is shorter. Thus, its absolute phase is a larger value

than that of the li;ht from the rest of the mirror. Therefore, a plot of the phase deviation
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in the aperture looks exactly like the influence function plot with piston subtracted out.

The previous discussion can be extended to the case where control voltages are ap-
plic-l to all 97 actuators. Assuine that tle light incident on the mirror is perfectly planar.
Thus any phase distortion in the reflected image will be solely cue to ilic mirror shape.
All 97 actuators are then excited by arbitrary but time-invariant control voltages. When
the mirror’s shape reaches steady state, a snapshot of tlie phase distortion in the reflected
image can be obtained by subtracting the spatial-average phase (i.e., the piston). An

appropriate equation for the phase distortion in the reflected image is:

97 97
KX, V)= f(X,Y. XA,YA)u(A)] —€ [Z fX,Y, X4, Y )u(A) (3.5)
A=1 J A=1
Equation (3.5) represents the mirror’s contribution to the distortion of the reflected image.
Since the left-hand side is phase deviation in an aperture, it can be expressed as a linear
combination of Zernike functicns Z, through Z.. For this research, the atmospheric
distortion is modeled as the first 14 of these. It then follows the mirror will only be trying
to correct only the first 14 modes. Thus the significant phase deviation caused by some
operctional set of commands to the mirror can be modeled as linear combinations of the

first 14 Zernike functions (as usual, excluding piston):

X, Y) = ia,— Z:(X,Y) (3.6)
1=1

The a; Zernike coefficients can be determined using Equation (2.25), expressed below in

rectangular form:
JdY [dX W(X,Y)¢(X,Y) Z:(X,Y) -
@ = - - (3.7)

JdY [ dX W(X,Y)

Substituting Equation (3.5) into Equation (3.7), and realizing that the product of piston

and any non-piston Zernike function integrates to zero yields:

[y [ dxX WX, Y) [S5, f(X.Y, X0, Ya)u(4)] Zi(X,Y)

ai

(3.8)

TdY [ dX W(X,Y)




One can then then pull the summation outside the integrals, and commute the scalar

control voltage:

« = i {[u}’ [ dX W(X,Y) f(X,Y, X4, Ya) Z,-(X,Y)] [u(A)]}

3.9
o JdY [ dX W(X,Y) (3.9)

Lquation (3.9) can be expressed in vecter form:
a;=m! (3.10)

where the A-th compcnent of thie m vector is the projection of the A-th actuator’sinfinence
function along the i-th Zernike function. Likewise the A-th component of the u vector is
the control voltage on the A-th actuator. Equaticn (3.10) can be written for each Zernike

function:

a = El;r u
@ = mju
(3.11)
a4 = Ln_']l; u
Finally, Equations (3.12) can be combined into matrix form as:
a=Mn (3.12)

where a is the vector of Zernike coefficients describing the mirror’s steady-state contribution
to the distortion of the reflected image. The matrix M is the steady-state influence matrix,
since it relates the steady-state influence of the mirror to the applied contrcl voltages. Each
element of the matrix is the projection of an actuator’s influence function along a Zernike
function direction. The Fortran program which calculates the M matrix for this research

is archived at AFIT {39]. The resulting M matrix is shown in Appendix E.

In order to check the reasonableness of the steady-state influence matrix, it was

decided to perform a test. The test consisted of analytically determiring the required




control voltage vector to cause the reflected image to consist of a selecied Zernike mode,
assuming perfectly planar incident light. Then the resulting voltage vector was applied
to the mirror in 2 mathematical simulation to see if the resulting phase deviation plot
“looked like” a plot of the selected Zernike function. The 14-th Zernike function was
selected because of its high spatial {requency content relative to the other modes. If the
mirror is able to reproduce the 14-th mode well, it should be able to reproduce lower- order
modes as well. An arbitrary value of a4 was chosen, with the remaining coefficients set to

zero. Equation (3.12) was then solved for the required voltage vector([14:35]:

u=MFMMT)1, (3.13)

This is the unweighted, minimum-norm solution. This series of matrix and vector op-
erations resulted in a set of 97 control voltages. A Fortran program was then used to
simulate the phase deviation caused by the set of voltages and generate plotable results.
Coraparison of Figure 3.6 with the plot of the 14-th Zernike function in Appendix A lends

credibility to the calculated M matrix.

Figure 3.6. Simulated Mirror Reconstrustion of 14-th Zernike Mode Phase Distortion

3.3.2 Iransient Behavior Up until now, only the steady-state behavior of the mir-

ror hias been considered; the mirror has been given time to respond completely to the input
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control voltages. Now the transient behavior of the mirror wili be considered. The mirror’s
manufacturer description states that an actuator acts as a electrical capacitive load [21].
It is thus reasonable to expect that application of a step control voltage Lo an actuator

does not result in a step response, but rather, an exponential approach to an asymptote.

The Operation Manual [21:6] for the Itek deformable mirror indicates the mean band-
width for the actvators is 500 Hz. AFWL bandwidth data [22) is generally in agreement.
Figure 3.7 is the AFWL plot of the frequency response for one of the 97 active channels.

For this particular actuator channel, the -3-dB f{requency is 497 Hz. It is assumed this
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Figure 3.7. Frequeacy Response of An AFWL Mirror Actuator Channel

plot includes the effects of the driver circuitry dynamics and the mirror dynamics. The
approximate slope of the rolloff is -10 dB per decade of frequency, which confirms the
presence of a first order pole. It is assumed the decibel values plotted are normalized with

respect to the low frequency response:

# of dB = 101log [———J (3-14)
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where R is the the ratio of sinusoidal excitation magnitude to sinusoidal response magni-
tude. Assuming the dynamics of the mirror are first order, time-invariant, «nd determin-
istic, the dynamics equation for the displacement at the actuator site for control-voltage

excitation of the actuator can be modeled by the scalar dynamics equation:
g(t) = cg(t)+d u(t) (3.15)

where g is the decrease in 2-way path-length of light reflected at the actuator (i.e., twice
the actual physical displacement of the mirror at the a~tuator site). The values of ¢ and d
in Equation (3.15) will now be analytically determined, using the bandwidth value and the
peak displacement of the assumed influence function, Equation (3.4). Taking the Laplace

transform of Equation (3.15) for zero initial displacement and rearranging yields:
G(s) = oy U(s) (3.18)

The s is the Laplace complex variable. Now if the control voltage input is switched from
zero to a sinusoidal voltage at time t=0, the input Laplace transform can be found from a

one-sided Laplace transform table [8:772):

u(t) = sinwt, t>0 (3.17)
. w -
IJ(S) = 5_2-:}.-—(;5 ‘).18)

Substituting this into Equation (3.16) and again referring to a Laplace transform table

[8:772] the time-domain response can be obtained:

9(1) = {d)(w) ( e + ,1__ sin (wt —~tan™} [_w_])) , 12>0 (3.19)

24 w? VT WP

Since ¢ < 0, the exponential term in the above equation vanishes as ¢t — oo. Thus, after

the transient response has died out, the sinusoidal “steady-state” response is:

2

J :
gss(t) = —=z==—==2sin (wt —tan™} [i.l\, , t>0 (3.20)
VC +w L=<y

r




At zero frequency, the amplitude of ¢ is merely ;‘—'. At the bandwidth frequency (assumed to

be 500 Hz, or 10007 rad/sec), the amplitude of ¢ should be 7‘; %’. Therefore the equation

L d_ d (3.21)
V2 ¢ /T4 (10007)2 '
can b solved for ¢, yielding :
¢ = 1000x cec-l
V2
~  —2222sec”!
N Y (3.22)
T 0.00045 sec '

Thus it can be said the time constant of a typical actuator is approximately 0.45 millisec-

onds.

From Equation (3.4) the steady-state value of g for a unit step control voltage u(t)
is 0.8673 wavelengths. The left-hand side of Equation (3.15) is zero at steady-state for a
step input. With zero on the left-hand side and u,;(t) set equal to one, Equation (3.15)

can be solved for d. The resulting value for d is:

= 9ss(1)
¢ = Ues(2)
_ - (_' 1007;)17) gss(t)
- Uss(2)
— (-12%=) (0.9673)

- 1

~ 2150 wavelengths

volt sec

Thus the dynamics of an actuator can be approximated by:

o) = _0—63_02 g(2) + 2150 u(t) (3.23)

The validity of Equation (3.23) for any actuator obviously depends on the assumptions

of all actuators having the same influence function and bandwidth. Also the dynamics




are assumed to be deterministic. With additional statistical data on the bandwidths and
influence functions of all actuators, 97 versions of Equation (3.23) could be written. Also,
the noise in the control voltage could be modeled, causing the addition of a stochastic term
to the equations. This research assumes the deterministic Equation (3.23) is valid for all

actuators.

The previous discussion of dynamics at the actuator site can be extended Lo the phase
distortion over the entire mirror. It is desired to formulate the dynamics of the mirror in
the form of:

X (1) = FinXp (1) + Brou(t) (3.24)

where the elements of vector x,,(t) are the time-varying Zernike coefficients which de-
scribe the mirror’s contribution to the phase distortion in the reflected image. The lack
of stochastic terms is an engineering assumption. Th2 previous assumption of identical
actuator bandwidths implies the entire mirror has the same bandwidth, and therefore the
same time constant. If a set of 97 control voltages is simultaneously applied to the mirror,
therefore, the dynamic behavior of the entire mirror surface would exhibit behavior indica-
tive of a 0.00045-second time constant. Thus, if ¢, (X,Y,t) is the mirror’s contribution
to the phase distortion in the reflected image then the following scalar equation can be
‘ATitten:

(X, ¥,1) = =2 6n(X.Y,1) 4 BE(X,Y) u() (3.25)

The vector of functions b,,,(X,Y) maps the voltage of each actuator to the rate-of-change
of phase at point (X,Y). The phase distortion introduced by the mirror, ¢m(X,Y, 1), can

be approximated by a linear combination of a finite number of Zernike basis functions:
(XY, ) = a1 (1) Z21(X,Y) + a2(t) Z2(X, Y ) + - - + ay4(2) Z14( X, Y) (3.26)

Taking the time-derivative of Equation (3.26) vields:

(X, Y, 1) & @1 (1) 20X, Y) + 62 Zo( X, Y ) + - -+ + a14(t) Z1a( X, Y) (3.27)




An immediate temptation is to write these two equations in vector form, fellowed by

substitution into Equation (3.25), which would yield:
. I\ To, v -
A0TZ(X,Y) = ==a(t) 200 Y) + ba (X, Y )u(t) (3.28)

To get Equation (3.28) into the form of Equation (3.21) witk the Zernike cocflicients
being the states, one is further tempted to take the transpose of both side- of Equa-
tion (3.28), then premultiply both sides by the vector Z(X,Y), ther premultiply both
sides by the matrix inverse [Z(X,Y)ZT(X,}‘)}-l. The problem with this approach is

that [Z(X,Y)ZT(X,Y)] is a rank-one matrix whose inverse does not cxist.

To get Equation (3.25) into the form of Equation (3.24), use is made of the orthog-
onality property of the Zernike functions. Substituting Equations (3.26) and (3.27) into
Equation (3.25) yields:

14 4 a7
S EZLY) = S aOK ) + LB 0 (329)
1=1 1=1 =1

Multiplication of Equation (3.29) by Z,(X,Y’), then spatially integrating both sides of the
equation over the area of tha mirror aperture—using Equation (2.22) where appropriate—
yields:

1

a3(0) = ~>a1(t) + —zulu() (3.30)

The vector p, is defined such that its j-th element is the projection of the function b;(X,Y)
into Z;(X,Y). Multiplying Equation (3.29) by each successive Zernike function and fcl-

lowing the integration procedure yields the set of equations:

. 1 1

a(t) = —;al(t) + m&?g(t)
. ) 1 7
ax(t) = —;az(t) t ik, u(t)

(3.31)

. 1 1
aa(l) = —=a(t) + —muiu)




Putting this set of differential equations into state-space form, yields:

Sin(0) = ding |~ 2] 50 (6) + Bruu(t) (3.33)

T

where diag[-] is a diagonal matrix of the argument and the rows of matrix B, are the ﬁT

row vectors, divided by wR?,

To determine the elements of the matrix B,,, consider the entire mirror at steady

state such that x,,,(t) = 0. Substituting this into Equation (3.33) and manipulation yields:
Xin,, (1) = diag [r] Bauy,(t) (3.34)
Comparing this equation with Equation (3.12), it is straightforward to show that:

R, = diag

(&

[L
LT} M (3.35)

where M is the steady-state influence matrix and 7 is 0.00045 seconds.

In summary, the dynamics of the Itek deformable mirror are written in terms of
the mirror’s contribution to the Zernike coefficients of the reflected image. Invoking the
assumptions of identical actuator influence functions and identical, first-order actuator

dynamics, the equation for these contributions to the Zernike coefficients is:

x.(1) = diag[ 1] %, (1) + diag H Mu(t) (3.36)

T

It should be noted this equation is a truncation of the infinite-dimensional functional-space

description to 14 dimensions.

3.4 Augmented System Dynamics

The overall continuous-time description of the adaptive optics system dynamics is:

0 |7 oo [ mw | [ o] ., s, (1) |
58] | 9 Full x| | Ba R |

(3.37)




The upper partition of Equation (3.37) represents atmospheric dynamics; the lower parti-

tion represents mirror dynamics.

3.5 Wavefront Sensor

The image reflected from the deformable mirror contains phase distortion due 10
atmosphetic turbulence and also counterdistortion due to the mirror deformation. Disior-
tion here is deviation in phase from the aperture-average phase, thus piston is excluded.
Letting the phase distortion in th2 reflected image he modeled in the Zernike functional

space, the corresponding discrete-time Zernike coefficients for the reflected image are:

[ Xq(ti)

at)= A | 1] — (3.38)
[ X (8:)

where A is the extraction matrix defined in Equation (3.2) and 1 is a 14-by-14 ideniity

matrix. Note that this equation models the reflection process as a suremation of two sets

of Zernike coefficients. Since the wavefront sensor measures the distoriion in the reflecied

image, the discrete measurement equation for the wavefront sensor can be written as:

z(t;) H'a(t;) + v(t)

X (t:) ]

H-’[A | 1] — ()
lm(li)J

Hx(t;) + v(t)

This research takes the approach of first calculating the H' matrix analytically, then post-
multiplying by the [ A | 1 ] matrix to ohtain . The measurement noise covariance R

corresponding to v(¢;) is left as a design parameter.

3.5.1 Wavefront Sensor Description The refiecied image is diverted to the wave-

front sensor via a beamsplitter. Light reiiected from the beamsplitter enters the Hartmann

wavelront sensor, The Hartmann sensor consists of au array of square convex lences, each
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Figure 3.8. Subaperture Locations on Hartmann Wasefront Sensor

considered a subz- rture of the sensor. The sensc: has €9 fuily-illuminated square sub-
apertures. Figure 3.8 shows the arrangements of the subapertures in the Hartman sensor
aperture. Lach sulaperture is 0.06 cm on a side [27] and focuses its share of the incident
light onto a reticon detector. The location of the focused spot of light on the detector
1s an indication of the average x- and y-tilt in the subaperture. Since subaperture tilts

are measured, the Hartmann sensor is essentially a slope sensor. Figure 3.9 shows a two-

dimensicnal analog of the operation of the Hartmann sensor {27).

3.5.2  Derivation of H' An important concept is that phase distortion in the image

manifests itself as a set of subaperture tiit measureinentss in the Hartmann sensor. Thus
any Zernike mode {except piston) distoriion of the whole image is measured as a set of
tilt measurements. It is assumed the Hartmann senscr can output these 138 tiit measure-
ments (69 x-tilts and 69 y-tilts) directly. The <ensor normally processes t-e set of 138 tilt
measurements and reconstiucts the phase. but this reconstruction is based only on current

ilts; previous time realizations are not considered. This reconstruction process is accom-
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Figure 3.3. Concept of Operation for Two-Dimensional Hartmann Sensor

plished in software, requiring computational time. This research therefore assumes the 138
noise-corrupted tilt measurements are the outputs of the sensor, i.e., comprise the z(¢;)

! vector. The Kalman filter estimates the system states from the 138 tilt measureraents.

Consider the phase distortion of the image entering the sensor to be a function of

position in the aperture and discretized time:
#(X,Y,t;) (3.40)

The variables X and Y are rectangular coordinates with respect to the center of the total
sensor aperture. Just prior to light entering one of the square subaperture lenslets, the

x-tilt at position (X},Y)) is:
(X, Y, 1,)!
L__J)I (3.41)
oY
Letting (X,,Y,) define the coordinates of the center of the s-th subaperture with respect

to the entire sensor aperture, the average x-tilt going into the s-th subapertuic lenslet is

322

§




then:

l y‘+)€£d}l X‘+32ﬂ .X' Qé()‘—s}lt t]) (3 42)
Ay L2 X,-¥A ) ’

where A is the area of the square subuperture.

According to Petersen and Cho [32] th2 output of a Hartmann-type slope sensor is
a similar integral, but with the slopes spatially weighted. For example, the output of the

x-tilt channel in a subaperture (ignoring noise) is:

2 L YA . .1’7 Y . oy
1 Y+ Nt 35 Oo(X,Y,15)
- 7 (N - . s o /’ Sl et A .
2. (L) = L= - d} 1 dX Wa(X = X, Y - Y,) =5 (3.43)

The constant L is dependent on wavelength, lenslet focal length, and output scaling. Pe-
terson and Cho derive the spatial weighting function W(X',Y’) for a square subaperture;

the normalized version is:

Wo(X',Y) = 213(2) {2 In(2) - (1 - %) In (1 - %) -(1+ %) 1+ %)]

(3.44)
Similar equations can be written for the subaperture y-tilt channel. A plot of Equa-
tion (3.44) for the subaperture dimensions of this research is shown in Figure 3.10. Obvi-
ously the slope of light traversing the center of the subaperture is weighted more heavily

than that traversing near the edges.

If the phase distortion of an image can be represented as a linear combination of

basis functions, then the partial derivative expressed in Equation (3.41) can also:

9N, Y, 15) 9Z,(X,Y) 8Z04(X,Y)

+ o aga(ty) oY

(3.45)

&y ll](ij) oy

Substitution of Equation (3.45) irntec Equation (3.43) and simple manipulation yields:

’ J_Z RS VA 3 ,\-|
el S PN AZuX,Y)
dY dX U (V= X, Y - Y,)-

X,- 2 ( ‘ L

(3.46)
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Figure 3.10. Slope Measurement Weighting Function

Equation (3.46), representing the noise-free output of the x-tilt channel for the s-th sub-

aperture, can be written in vector notation:
L T
2, () = 7 n,, a(t;) (3.47)

The i-th element of the n_, vector can be thought of as the projection of the i-th Zernike
function into x-tilt measurement space at the s-th subaperture. Xnowing the location of
the center of an actuator relative to the entire aperture, and knowing the partial derivatives

of the Zernike functions, the elements of n,, can be determined as:

X+ 32

o X WX - XY Y,

K-SR

Equation {3.47) can be repeated for both the x- and y-tilt channels for all 69 illu-

minated subapertures, continuing with the noise-{ree measurement assumption. The 138




resulting equations can be augmented into a matrix form:
L
«(t;) = —Na(t;) (3.49)
Therefore, the H' matrix of Equation (3.39) is:

L
H == 5
IN (3.50)

The Fortran program developed to calculate the N matrix for this research is archived

at AFIT [239]. Appendix F shows the resulting N matrix.

To determine the value of the scaling constant, L/ A, results of previous AFIT research
are useful. Miller (27] collected measurement data from a realization of the Hartmann
sensor studied in this research. He excited the sensor with 543.5-nm laser light and recorded
the outputs from the slope channels. These outputs were not in wavelengthe of tilt, but
rather in internal programmable microcoded processor (PMP) units. He determined that
one wavelength of tilt across a subaperture, on the average, resulted in a slope channel
ouiput of 745 PMP units. Simple algebra shows that one wavelength of y-tilt across a
subaperture corresponds to the Zernike coefficient a; = 2.574. The value of L/A applicable
to his research can be determined by considering the non-zero elements of the a; column

of the N matrix, which are 2.0419. Solving the equation:
. L
745 = ) (2.0419) (2.574) (3.51)

yields a value for ;];; of 141.75.

To keep the analysis as general as possible, this research assumes the outputs of the
Hartmann sensor are the x- and y-tilts of each subaperture, in units of 514-nm wavelengths
(not PMP units). Similar algebra yields a value for % of 0.19025. The N matrix derived

in Appendix F should be premultiplied by this constant to get the H' matrix used in

Equations (3.39).




8.5.5  Derivation of R The outputs of wavefront sensors are generally corrupted by

T

noise. Numerous literature references [30:139] {14:30] [40:1772] [40:1773] [32:821] indicate
the noise is zero-mean, white, Gaussian, unccrrelated from subaperture to subaperture,
and uncorreiated "o the wavefront phase. Possible sources of this noise include photon
shot noise, A/D quantization noise {assuming the Hartmann outputs are digital), and
thermal noise. The photon shot noise variance is inversely proportional to the number of
photons counted during a measurement cycle [47]. The photon count is, in turn, reluted to
light intensity. The lower the light intensity, the more shot noise there will be in the slope
measurement. A/D quantization noise is typically uniformly distributed between minus
1,/2 and plus 1/2 least significant bit. This distribution could be approximated as Gaussian
with the 3-¢ value sct to 1/2 the least significant bit [24:364]. Thermal noise is related to

absolute remperature, through Boltzman’s constant.

Since the intensity of the viewed object is expected to vary greatly (23] as the target
changes orientaticn with respect to the viewer, and also from target to target, it is likely
that the shot noise contribution to the measurement noise will also vary. This research
treats such noise as the dominant noise scurce, ignoring all others [47]. Therefore, this
rosearch includes a parameter study on the R matrix. Using equations discussed in Welsh
and Gardner [47], this research calculates slope noise strengths corresponding to 1000, 100,

and 10 photons per subaperture. Table 3.2 shows values used for the diagonal elements of

the R matrix.

Table 3.2. Measurement Noise Strengths

N DESIGNATOR Rii (wavelength?)
1000 Low 0.01755

100 Medium 0.0555

10 High 0.1755




3.6 Summary

This research develops stochasti- models for atmospheric turhulence « Tects, de-
formable mirror dynamics, and a Hartmann-type wavefront sensor. The phase distortion
due to atmospheric turbulence is modeled in the Zernike functional space. The Zernike
coefficients are modeled as first—order Gauss-Markov random processes. The models are
obtained by fitting theoretically-derived autocorrelation data to appropriate functions.
Using data from the AFWL, this research synthesizes a deterministic dynamics model for
a deformable mirror. The ability of the mirror to reconstruct the 14th Zernike function
is verified in a simple simulation. The measurement matrix H is calculated by projecting
each Zernike mode of distortion into subaperture slope space, incorporating an appropri-

ate weighting function. Finally, values of slope sensor noise due to phoion shot noise are

calculated, to be used as a varying parameter in simulations.




¢ Controller Design

4.1 Kalman Filter Desion

The Kalman filter for this research is of the same order as the truth model. Since both
the atmosphere and the mirror Zernike coeflicients are first-crder processes, tiie halman
filter is a 2&%-state filter—14 for the atmosphere and 14 for the mirror. For the time-invariant
model assumed here, the continuous-time dvnamics and discrete-time measurement truth

model equstions are:

x(t) = Fx(t)+ Bu(t) 4+ w(?) 4.
z() = Hx(t) + v(i) {4.2)

The T and § matiices are diagorel, with elements given in Table 4.1, The y tilt
and x-tiit noise strengths have beer attenuated te reflect the presence of tilt mirrore.
These tilt mirrors are modeied as removirg 95 percert of atmosphere-induced tilt. The
B matrix is merely determmined using Equations (3.35) and (3.37); the M matrix is given
1n Appendix L. The H matrix is cetermined from Equations {3.39), (3.50), and the N

mairix of Appendix F. The noise variance matrix, R is an identity matrix premultiplied

by one of the values of Table 3.2, depending on the noise model.

‘The filter models vhe continuous-time dynamics of the truth model in the discrete
domain as suggested by Equation (2.38), forgoing on-line integration. Table 4.2 summarizes

the dimensionality of the discrete state-space filter model for the adaptive optics system.

With a sample period of 7 milliseconds (the maximum sampling rate of the Reticon
chip in the Hartmann senscr [27]), the state transition matrix for this time-invariant system

model is calculated as [24:42):

B(1,4) — 1) = eFO007) (4.3)




Table 4.1. Continuous State-Space Model

d Fi; (second™?) Q.; (wavelength?/second?)
1 - 567 0.1605
2 -5 0.075
3 — 5% 0.405
4 -5 0.800
5 - 5o 0.509
6 - 505 0.124
7 -5 0.223
8 . ~ 585 0.210
9 -5 0.241
10 -5 0.36
11 - 5oE 0.0694
12 -5 0.0833
13 - 555 0.0645
14 oS 0.117
15 M RCITE 0
16 ~ 5oeoTs 0
17 — ST 0
8 — D005 0
19 — 505 0
20 - GTeTE 0
21 - G005 0
22 "E(‘)S’O?E 0
23 — S 0TE 0
24 — 500 0
25 T E 0
26 "E(Yl)&‘s 0
27 "o_.o(;—oqﬁ 0
2% ‘T,n‘sﬁa‘s 0




Table 4.2. Dimensionality of Kalman Filter Vectors and Matrices

Matrix/Vector Dimension
(tis1, 1) 28 x 28
x(t;) 28 %1
By 28 x 97
u(t;) 97 x 1
w(i;) 28 x 1
Qq 28 x 28
z(t:) 138 x 1
H 138 x 28
v(t,) 138 x 1
R 138 x 138

Since F is a diagonal matrix, so is ®(ti41 — t;), and the exponentiation is easily
accomplished term~by-term. The discrete version of the dynamics driving noise is deter-
mined using Equation (2.39). For this time-invariant model, with G being the identity

matrix, and F being diagonal, Equation (2.39) is manipulated:

1y
Qs = / " 8t -1GaTe (- ) dr
t
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0

0007 .
- Q/ 2F(0.007-7) g
0

0.007
= Qc2Fooor [ o 2F7 4o

0
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The diagonal elements of ®(t,;1~1¢;) and Qg are given in Table 4.3. Nou-diagor .. clements

are zero.

The Kalman filter processes the 138 slope measurements every 0.007 seconds using
Equations (2.43) through (2.47). The filter assumes the measurements are available in-
stantly. The important output of the filter is the estimate of the system state, since this

is ultimately multiplied by the controller gairn.

The Kalman filter requires initial conditions on both the state estimate %(0) and
covariance P(0). Since the states model the Zernike coefficients as zero-nican, tiie injtial
filter estimate of the system state is selected tu be a zero vector. The first 14 diagonal

elements of P(0) are set to large values to reflect initia} uncertainty.

4.2 Linear Quadratic Regulator Design

Equation (2.41) defines the cost to be minimized by the quadratic regulator. For the

adaptive optics system of interest, it makes sense to assign cost to the phase distortion in
the reflected image, since this is the image which is desired to be distortionless. It also
makes sense o assign cost to the control voltages, since they are restricted to be within a
finite range (£10 volts). The derivation of both the X and the U cost matrices are now

discussed.

The phase distortion in the reflected image is modeled by its set of Zernike coef’icients.

This set of Zernike coefficients is obtainable from the discrete state vector by:

X,(t)

[A | 1] - (4.5)

X (1)

The quadratic cost associated with the distortion in the reflected image is:

T
X, (4) } {

[A|I] -_-J C[A!I] - (4.6)



Table 4.3. Filter State Transition Matrix and Discrete Driving Noise

q)j](ti-}l’tl)

Qaq;; (wavelength?)

0.904810273562201

0.004073001858519

0.954383210022565

0.002004933000163

0.920977197358095

0.010455681053018

0.737595246709826

0.0167784065436G54

0.8187238942175404

0.011749v606438655

0.823279104805153

0.002876474222156

0.704G88089718714

0.004490459090181

0.737595286709826

0.004404331717709

0.704688089718714

0.004852917671451

0.943357461794590

(.009593719616645

0.677783484408774

0.001350533885479

0.627118334037179

0.001516351317027

0.900765787779704

0.001629746010087

0.627074461402559

0.002129683020039

0.000000175785733

0.600000000000000

0.000000175785735

0.000000000009000C

0.000000175785735

0.000000000000000

0.000000175785735

0.000000000000000

0.000000175785735

0.000000000000000

0.000000175785735

0.000000000000000

0.000000175785735

0.00000v000000000

0.000000175785735

0.000000000000000

0.000000173785755

0.000000000000000

0.000000175785735

0.000000000000000

0.000000175785735

0.0020000000060000

0.000000175785735

0.000000000000000

(0.000000175785735

0.006000000000000

0.000000175785735

0.000000000000000
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where the C is a diagonal matrix of cost elements. Assume onc desires the maximum rms
phase deviation due to any Zernike mode to be 1/20 of a wavelength. Remembering that
the Zernike coeflicients map directly into rms phase distortion, one can say the maximum
value for any Zernike coefficient is 1/20. Each diagonal term of C, for the first design, can
be set equal to the reciprocal of the square of the maximum value {25:69]. Therefore, the

diagonal elements of C arc 400, with all other elements zero, for initial tuning.

Manipulating the expression in Equation (4.6) one obtains:

T T :
[Ty adeo || 5% 2 0] =W (4.7)
caA C X, (4)

which is exactly of the form

xTX x (4.8)

The extraction matrix A is a 14-by-14 identity matrix for this research, since each atmo-
spheric Zernike coefficient is modeled as first-order Gauss-Markov. Therefore, the state

cost matrix X is a 28-by-28, singular, banded diagonal matrix:

C
X = (4.9)

The first design iteration of the cost matrix U associated with the control voltages
is simpler to derive. The maximum allowed control voltage to any actuator is £ 10 voits.
Using the reciprocal-squared method results in the initial design for the U matrix being
a diagonal matrix with diagonal elements of 0.01. If the simulated petiormance of the
adaptive optics system is unacceptable, these cost matrices can be varied to try to improve

performance.

Knowing the ®(t;+1—1t;), Bs, X, and U matrices, one can use the Martix-X command

“DREGULATOR” to obtain the steady—state solution of the backward Riccati equation

and obtain the optimal steady-state controller gain matrix G} (See Equations (2.51) and

(2.52)). This value of G7 can now be used as the controller gain in a digital simulation

of the adaptive optics system. The cost matrices X and U can be adjustcd to try to
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improve performance. The controller multiplies its optimal gain by the state estimnate
from the Kalman filter to obtain a set of control voltages for the mirrer actuators (See

Equation (2.50)).

4.8 Summary

This chapter assembles the results of previous chapters into suitable Kaiman filter
and controller form. The cost matrices X and U are calculated for the first iteration of
controller design. Matrix-X software is used to solve for the stcady-state controller gain.

Depending on simulation results, the cost matrices may need to be tuned to maximize

performance, i.e., minimize rms phase distortion in the reficcted image.




V. Simulation Iesults

5.1 Metboa’()lo__ﬂ!

A digital simulation of the adaptive optics system was desired in order to test the
eflectiveness of the LQG enutroller in reducing phase aberration. The Multimode Simula-
tion for Optimal Filter Dvalnation (MSOFE) software tool was used {28]. The simulation
involved impiementing a truth model of the atmosphere/mirror/sensor sysiem to generate
simulated discrete-tiine Hartmann sensor measurements. The Kalman filter, also em-
bedded in the simulition, processed these simulated measurements and determined the
estimate of the 28 truth model states. The LQ regulator then multiplied this state vector
estimate by the optimal controlier gain (pre-calculated off-line), and the resulting controi
voltage commands were sent to the simulated mirror actuators. The nonlinearity of the

by limiting the mirror voltage to

IMirror respouse Lo applivd Contiol voltage was shnulated
the £ 10 volt region. For example, if the contrcller tried to command an 11-volt control
voltage to an actuator, logic in the simulation program truncated the value to 10 volts.
This nonlinearity imposed the use of multiple Monte Carlo simulations, as opposed to a

single covariance analysis {24:329] {28).

Outpu 5 from the simulatisn included time histories of the 28 truth-model states,
the filter’s estimates of these states, the filier covariance matrices, and the maximum and
minimum control voltages of the mirror actuators. Post-simulation data reduciicn yielded
time histories of the rms phase distortion ot the optics entrance aperture as well as the rms
phase distortion after correction. The Matrix- X software package was used 10 perform the
data reduction as well as generate plots of time hisiories. In addition to singie realizations
of these time listories, ensemble statistics were generated using Monte Carlo analysis of

ten runs.

As previously discussed, there is expected to be significant variation of measurement
noise strength, i.c., the elements of the R matrix. in a real adaptive optics system. The
simulation was performed in nine “studies” in order to investigate performance sensitivity
to R. Each study shmulated o difi~rent combination of truth model and filter mmodel

measuremen®. noise strengths. Table 5.1 shows the combinations simulated.
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Table 5.1. Truth and Filter Model Measurement Noise Strerngths

STUDY TRUTH FILTER
1 Low Low
2 Medium Medium
3 High High
4 Low Med
5 Low High
6 Medium Low
7 Medium High
8 Highi Low
9 High Medium

The noise strengths of “Low”, “Mediuin™, and “High™ correspond to photon ccunts
per subaperture of 1000, 100, and 16, respectively; see Table 3.2. The objective here was
to determine the effect of mismodeling the noise strength in the Kalman filter. In a real
implementation, R in the filter model may be fixed and therefore wrong for the case of
the true, intensity-dependent measurement noise. Since the regulator design was based on
a deterministic version of the stochastic dynamic equations due to certainty equivalence,
changing the R matrix does not affect the steady-state value of the regulator gain matrix
G?. Thus, all nine studies used the same regulator gain matrix. The following discussion

presents a verbal and graphical description of study 1.

5.2 Study 1 Description

Stady 1, having low measurement noise cor >ctly modeled in the Kalman filter, is
the mast optimistic of the studies from a performance perspective. Since the mirror (states
15-28) is assumed deterministic ir: both the truth and filter models, the filter estimates of
thie mirror states are trivial, and they will be omitted from mos* of the discussion. In an

operational system these deterministic states should not even be included in the Kalman

filter, for computational reasons. Their inclusion in the filter Lere is merely convenient.




5.2.1 Simulated Atmospheric State Behavior Thi research modelsimage phase dis-

tortion induced by atmospheric turbulerce as fourteen time-varving Zernike cocflicients.
It is arbitrarily assumed that tilt mirrors ahead of the adaptive optics system remove 95
percent of the first two Zernike modes (y-ti.t and x-tilt). Zernike cocficients for the re.
maining tilt distortion as well as the other twelve modes ate states 1-14 of the truth model.
Figure 5.1 shows a time-history of a sample realization of the y-tiit Zernike coeflicient x;

as weli as the filter estimate, X;.

STATE X1 (WAVES)

TiME (SEC)

— System - - - Filter

Figure 5.1. Atmospheric Y-tilt State and Filter Estimate

Filter error can be defined as the true state minus the filier estimate of the state.

The filter covariance P is the filter’s indication of uncerta;nty in its esiimates, as in Lgua-
tion {2.42). The square root of the (1,1) 2iement of the P matrix i> what the filter beheves
to be the 1.0 value of its error. Although Figure 5.1 shows that the filter appears to be

tracking the true state value, it docs not indicate how the actual filter error compares with




what it thinks are its 1-0 values. Figure 5.2 shows a time history of the filter error for

state 1, as well as these filter-computad 1-¢ values.

FILTER ERRCR (WAVES)

TIME (SEC)
—— Eiror .- - i\/ﬁll,_r)

Tigure 5.2. Atmospheric Y-tilt Filter Error and Filter Variance

Looking at the single-sample realization of filter error of Figure 5.2 and ascuming the
error is an ergodic random process, it appears that £,/P(1,1) is a reasonabie 1-v value
for the error, and that the error is zero mesn. In arder te obtain the “trae” error rean
and variance, a Monte Carlo analysis of ten runs was accoruphisned. The equations used

to process the results of these ten runs are:
30
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where

ex(1) = xk(t) = %x(1) Twavelengths)

sample realization number

mean of random process E(t) (wavelengths)

= variance of random process E(t) (wavelengths®)

o
Il

1}

Figure 5.3 shows a plot cf the mean and standard deviation of the fiiter error for
state 1, as calculated from the ten sample realizations using Equations (5.1) and (5.2).
Visual iuspection of this plot reveals the error process is approximately zero mean, with
standord deviziicns approximately equal to the /71,1 values from Figure 5.2. If more
sample realizations had been inciuded in the Monte Carlo analysis, the similarity would

most likely be even greater.

Plots similar to those of Figures 5.1, 5.2, and 5.3, can be found in Appendix G ior
the remaining 13 states corresponding to image nhase distortion prior to correction. This

complete set of plots is {or study 1 only.

5.2.2 Performance An. lysis The performance of the LQG —-muroller can be ex-

pressed in terms of rms phase distoriicn in the corrected image versus ithe »ms phase
distortion of the incident image. Again, incident here means ajter the tilt mirrors have

removec most of the gross tilt. States 1—14 of the system model are the Zernike coeifi-

cients for atmosphere-induced phase distorticn, and states 15—%8 are Zernike coefficierts
for the mirrerinduced “counterdisioriion”. Since reflertion from the deformable mirror is
medaeled as addition of atmospheric and mirror phiase Gistortions, the Zernike coefficients

cf the reflected (1.0, corrected) hnage are:

a{t) = a.(t)+a,(l) (5.3)
= Eqelt) b X aglt) (5.4)
= {1]1) ={t) (5.5)
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Figure 5.3. Mean and Standard Deviation of Atmospheric Y-tilt Filter Error

It has already been shown that the rms phase distortion is the square root of the
sum of the squares of the Zernike coefficients (see Appendix C). The rms phase error of

the incident image is:
14

¢rm5(t‘) = .\>:(X,)7 (56)

=1

and for the corrected image, the rms phase distortion is:

(4]
~?
~—

14
Orms(t) = \Z(Xx 4 Xip14)° (5.
1=1

A time history of a sample realization of the rms phase distorticr is shown in Figure 5.4

for both the incident and corrected images. The values for this plot were obtained during

the past-simulation data reduction phase of the study, using Eguations (5.8) and {5.7).




The plot clearly shows the reduction in rms phase error. Moreover, this single realizi:tion
shows the rms phase error of the corrected image tends to sty in the vicinity of abe + 6]
wavelen whs, whereas the rms nhase error of ti-e incident image varies between about 0.1

wavelength and 0.5 wavelength.

Calculating similar resulis for cach of the ten Monte Cario reatizations and genesating
the usual statistics results in values plotted in Figure 5.5. The upper thiee fines of the
graph show the mean and the mean1-g] values ou the rms phase distortion of the incident
image. The apparent transient in these threc lines during the initial 0.05 «econds of the
simulation was caused by unrealistic initial condition- in the trith moae {all “tates zero).
It wnuld be a mor¢ 1ealistic simuiation if the initial truc states were random. The lower
three lines of the graph represent the mean and the [mean £ 1-¢) val 1os on the tns phase

distortion of the corrected image. One feature of note is that the 1-0 values on the corrected

-

image are tighter than on ithe incident image. Tiis seems o sugpest the quality of the
corrected image is somewhat constant. despite wide variationin the amount of etmospheric
distortion. Another feature is the sawtooth appearance of the lower set of plots. The period
of the sawtooth appears to be the Hartmann sampling period {0.007 sec). This sugges:s
the correction is most effective just after a measuremant, and degrades as tlie atmosphere
changes between measutemenss. One mayv woander if even better performance 1o possible
In other words, one can ask, whai is limiting the parformance shown in Figure 5.57 At
least three answers are nossible: 1) saturation of misror acteators, 2) improperiv chosen
welighting matrices in the LQ reguiater, or 3) the :ilfer’s estimation errors. Fhe first
possible reason, actiator seturation, is immediately cinuinates based on Migure 5.6, This
plot shows the absolute envelope for the actuator control voltages for tie enseinble of
ten Monte Carlo realizations. Given that saturatvien oceurs when vhe magnitude of the
commanded voltage exceeds 10 volts, and the maximum actual excursion was only about
+ one volt, saturation did not occur. ln fact, one could say the mirror had cuits @ bit
of “ramainung” capability left. The sccond reason, improperly ciiosen weighting ra'rices

X and U, was 2himinated by a tuning experiment. The nonzero elements of the X
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Figure 5.4. RMS Fhase Distortion Before and After Correction
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Figure 5.5. Monte Carlo Study of RMS Phase Distortion Before and After Correction
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Figure 5.6. Control Voltage Envelope for Monte Carlo Study

matrix of the cost equation were increased by 50 percent. This penalized the distortion of

the corrected irnage more heavily. The simulation was re-run using the new steady-state

controller gain, G, and performance did not improve. The third reason, filter estimation

error, was analyzed in the following manner. The filter’s function is essentially to estimate

the Zernike coefficients of the incident, uncorrected image. Assume the regulator/mirror

combination can perfectly implement the filter’s estimate (without a sign change). The

rms phase error due solely to the filter's estimation error can be thought of as the lower

bound on rms phase error attainable and is calculated using:

14

Pems(t) = \ S (ki - %)2 (5.8)
1=1

Monte Carlo analysis of values calculated using Equation (5.3) is shown in Figure 5.7. The

extreme similarity of this graph and the lower three plots of Figure 5.5 strongly suggest

that filter estimation error is the performance-limiting factor. Awu aiternate method of



determining the contribution of filter estimation error to the rms phase distortion would

be to input X instead of x into the controller, anc see if the rms error is eliminated. This

alternate method was not used in this research.
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Figure 5.7. Monte Carlo Study of RMS Phase Distortion Caused by Filter Error

5.3  Performance Results

The abeve analysis section dealt exclusively with study 1, the case of low measure-

ment noise correctly modeled in the filter. Similar graphs for the remaining eight Studies

are shown in Appendix H. [Also shown are filter estimation plots for Zernike modes 1

and 14.) In order to compar. resuits from the nine studies conveniently, {urther data

compres. «  was accomplished. This amonunted to time-averaging the mean-value plots of

rms phase distartion from each of the nine Monte Carle studies. Thus each of the nine

studies is summarized by three numbers: the rms phase distortion of the incident image,




the rms phase distortion of the corrected image, and the rms phase distortion which could
be achieved if the regulator/mirror could perfectly implement the filter’s estimate, i.e., the
filter “error.” Furthermore, all three of these numbers can be normalized by dividing by
the first. This normalization provides a fairer comparison across the nine studies. Table 5.2

shows the results of this time-averaging and normalization.

Table 5.2. Summary of Adaptive Optics System Simulated Performance

RMS DISTORTION NORMALIZED
STUDY Inc. Cor. Flt. Inc. Cor. Tlt.
1 0.2552 0.1083 0.1031 1 0.4244 0.4040
2 0.2557 0.1126 0.1079 1 0.4404 0.4220
3 0.2598 0.1321 0.128% 1 0.5085 0.494G6
4 0.2546 0.1088 6.1033 i 6.4273 0.4057

0.2536 . 0.1112 0.4681 0.4385

0.2543 . 0.1081 0.4420 0.4251

0.2565 . 0.1131 0.4682 0.4409

0.2511 . 0.1446 0.5687

0.2478 0.1356 0.1362 0.5472

Inc. = Incident Image Cor. = Corrected Image Flt. = Filter Error

As expected, study 1 resulted in the lowest rms phase distortion in the corrected
image. This was the case of low measurement noise, correctly modeled in the filter. That
the rms phase distortion of the corrected image was only slightly larger than the rms phase
error caused by the filter error indicates that most of the phase error in the corrected image

was due to filter estimation errors. As the true measurement noise increascd (studies 1 —

2 — 3), and the filter R was modified correspondingly, the performance was progressively

poorer. This reflects the fact that noisier measurements resulted in a less accurate state

estimation, even with the filter properly tuned.

The worst performance came from stndy 8. This was the casc of high measurement
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noise, mismodeled in the filter as low measurement noise. Heuristically, the filter had too
much confidence in the incoming measurements, and tended to disregard it's own model of
the dynamics. The result was a corrected image having an rms phase distortion of 0.1428

wavelengths.

5.4 Summary

This chapter discusses the digital simulation of the adaptive optics system. The
MSOFE sofiware [28] is used to accomplish the simulation. This software simulates both
real-world behavior and Kalman filter processing. Modifications to the software allow
for implernentation of LQG control. The simulations comprise a set of nine studies, each
having a different combination of true measurement ncise and filter model thereof. Study
1, the case of low measurement noise correctly modeled in the filter, is analyzed in detail.
A table of results is presented which indicates filter estimation errors limit the controller’s

performa.ice.




VI. Conclusions und Recommendalions

6.1 Summary

This rescarcl. considered the design of a nominai linear quadratic Gaussian (LQG)
controller for a ground-based adaptive-optics telescope. Phase distortion caused by at-
mosplieric turbulence was modeled as 14 time-varying Zernike coefficients. The effect of
tilt mirrors was modeled as removing 95 percent of the mean square contribution of the
first two Zernike modes. Dynamics of the 97-actuator deformable mirror, following the tilt

mirrors in the optical path, were modeled as a 14 deterministic first-order lags.

A 69-subuperture llartmann-type wavefront sensor was assumed to be the messure-
ment device. The slope outputs from the subapertures comprised a 138-clement measure-
ment vector. The sampling period was assumed to be 7 milliseconds, corresponding to
the maximum detector rate. A 28-state Nalman filter processed thie measusemes ts from
the wavefront sensor and obtained estimates of system states. A constant-gain linear
quadratic (LQ) regulator processed these state estimates and determined an appropriate

set of commands for the deformable mirror.

The entire control system was digitally simulated using the Multimode Simulation
for Optimal Filter Evaluation (MSOFE) software. Nine simulation studics were conducted

to investigate the eflects of mismodeling the noise in the measurement device.

6.2 Conclusions

1. The LQG approach used in this research makes scnse because the desired goal of
reducing the rms phase error translates directly into the quadratic cost criteria. The
mean-square phase distortion is the sum of the squares of the Zernike coefficients

(states).

2. Most of the open literature models atmospheric turbulence as having Kolmogorov

properties. Taylor’s frozen field assumption is also popular. Results bascd on actual

measurements of atmospheric cflfects on image guality are sparse.




3. Assuming the atmospheric distortion is well-modeled by the Gauss-Markov processes

of this research, the deformable mirror operates in the lincar region, i.e., its actuators
are seeing control voltages in the £1 volt range, whereas saturation occurs at the

410 volt limits.

4. Modifications to the MSOFE software allowed for simulation of LQG control. These
consisted of pre-multiplication of the filter state estimate vector (after measurement
update) by the steady-state controller gain, pre-multiplication of this result by the in-
put distribution matrix, and adding the result to the right-hand side of the dynamics

equation.

o

. Based on Monte Carlo simulation results, the adaptive optics system did reduce
phase distortion in all cases. Table 5.2 shows that the (simulated) deformable mirror
reduces the rms phase distortion to about 40—60 percent of its incident (post-tilt
mirror} value. The best performance was achieved when the filter model of the
measurement noise was “correct” relative to the truth model. When the measurement
noise in the truth model increased, the performance degraded, even if the filter was

retuned correspondingly.

». A single realization of the performance history (Figure 5.4) hints that the phase qual-
ity of the corrected image is somewhat constant, regardless of the actual magnitude
of the incoming atmospheric phase distortion. This result is most likely related to

the operation of the actuators far from their saturation limits.

. Comparison of the remaining phase distortion after correction to the phase distortion
caused by filter estimation error (Figures ..5 and 5.7) indicates that state estimation

error is the factor most limiting per{formance.

Recommendations

6.3.1 Modeiing This research is based on a set of nominal models, mostly derived

from theoretical results. The aforementioned “performance” of tha LQG control law is

only as valid as the truih model of the real world. This research never clainied to deveiop




